Registered Data

[00833] Exact controllability for imperfect interface problems

  • Session Time & Room : 3E (Aug.23, 17:40-19:20) @G601
  • Type : Contributed Talk
  • Abstract : We study the exact internal and boundary controllability for a second order linear evolution problem defined in a two-component domain. We prescribe a homogeneous Dirichlet condition on the exterior boundary and a jump of the displacement proportional to the conormal derivatives on the interface. This last condition is the mathematical interpretation of an imperfect interface. The results are achieved via a constructive method known as Hilbert Uniqueness Method, HUM for short, introduced by J. -L. Lions. Unlike classical cases, we find lower bounds for the control times depending not only on the geometry of the domain and on the coefficient matrix of our problems but also on the coefficient of proportionality of the jump with respect to the conormal derivatives. References [1] S. Monsurro`, A. K. Nandakumaran, C. Perugia, Exact Internal Con- trollability for a Problem with Imperfect Interface, Appl. Math. Op- tim. (2022), 1-33. [2] S. Monsurro`, A. K. Nandakumaran, C. Perugia, A Note on the Exact Boundary Controllability for an Imperfect Transmission Problem, Ric. Mat. 40 (2021), 1-18.
  • Classification : 35LXX, 35QXX
  • Format : Talk at Waseda University
  • Author(s) :
    • Sara Monsurrò (University of Salerno)