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Welcome Message to 
ICIAM 2023

On behalf of the International Council for Industrial and 
Applied Mathematics, I would like to welcome all of you 
to ICIAM 2023, and to Tokyo, the beautiful capital city of 
Japan. I hope you will have a wonderful time attending 
interesting talks, engaging in stimulating discussions, 
meeting old friends and making new ones. 

ICIAM congresses are known for their rich programme , 
and I am proud to say that this one is no exception. As we 
ring up the curtain on the congress, please allow me to 
highlight a few items on the agenda this year.

At the opening ceremony, we shall present to you the 
winners of the 2023 ICIAM prizes. Although the winners 
were already announced on September 19th, 2022, it 
is only at the opening ceremony of the congress that 
they are officially awarded. This is an opportunity to 
acknowledge the achievements and appreciate the 
contribution of these outstanding colleagues. The prize 
winners will present their research work during the 
course of the congress. 

Besides the talks by this year’s ICIAM prize winners, there 
will be 27 invited talks, selected by the Scientific Program 
Committee, chaired by Professor Yasumasa Nishiura. The 
Scientific Program Committee has done a wonderful 
job in selecting these 27 applied mathematicians’ work 
in different areas, showcasing the diversity of the topics 
represented at ICIAM congresses. 

Another highlight of the week will be the Olga Taussky-
Todd lecture, also known as the OTT lecture, delivered 
this time by Professor IIse C.F. Ipsen of North Carolina 
State University from the United States. The OTT lectures, 
given for the first time in 2007 in Zurich, were set up 
by ICIAM upon the suggestions of the AWM and EWM 
societies with the intent to celebrate a female scholar 
who has made outstanding contributions to applied 
mathematics and/or scientific computation. The 
lectures pay tribute to Olga Taussky-Todd, a great female 
mathematician whose scientific legacy belongs in both 

Ya-xiang Yuan
ICIAM President
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theoretical and applied mathematics and whose work 
exemplifies the qualities we want to recognize in this 
lecture series. The OTT lecture has long been sustained 
by small individual donations, and this year we deeply 
appreciate the generous donations from Mathworks, 
Comsol and the Inamori Foundation from Japan.

There will be two public lectures at ICIAM 2023. One 
is given by Professor Noboru Kikuchi, the Genesis 
Research Institute Inc. The other public lecture will be 
given by Professor Padmanabhan Seshaiyer of George 
Mason University from the United States, under the 
title "Understanding the Dimensions of Justice, Equity, 
Diversity and Inclusion (JEDI) Across the Globe in 
Applied Mathematics Research and Education". Professor 
Padmanabhan Seshaiyer works in the broad areas of 
computational and applied mathematics, computational 
data science, computational biomechanics and STEM 
Education. During the last two decades, he has initiated 
and directed a variety of educational programs including 
faculty development; post-graduate, graduate and 
undergraduate research; K-12 outreach; teacher 
professional development; and enrichment programs to 
foster the interest of students and teachers at all levels to 
apply well-developed research concepts to fundamental 
applications arising in STEM disciplines. I have no 
doubt these two talks will be especially fascinating to 
mathematicians and to the general public alike.

Pioneered by the Valencia Congress four years ago, an 
"Industry Day" will be held on August 23rd. The Industry 
Prize lecture and industry-related invited lectures will 
be presented on that day, in addition to many other 
events centered around industrial applications and 
collaborations. We are thankful to the many industry 

professionals who have helped with the organization 
of “Industry Day” and to the congress in general. I have 
no doubt that “Industry Day” will be one of the main 
attractions of ICIAM congresses that many of us look 
forward to.

Apart from the invited talks and distinguished lectures, 
there will be many mini-symposia, contributed talks 
and poster sessions, covering all areas of industrial and 
applied mathematics. In particular, JSIAM (The Japan 
Society for Industrial and Applied Mathematics), CSIAM 
(China Society for Industrial and Applied Mathematics) 
a n d  S I A M  ( S o c i e t y  fo r  I n d u s t r i a l  a n d  A p p l i e d 
Mathematics) will host their respective annual meetings, 
with events embedded into the agenda of the ICIAM 
Congress. These events are sure to complement each 
other on various levels. 

Last but not least, my deepest gratitude goes to the 
organizing committee of ICIAM 2023, JSIAM, and the 
entire Japanese applied mathematics community 
who directly or indirectly supported the success of this 
congress. I would like to thank them for their tremendous 
efforts in assembling and coordinating the programme , 
and their kind hospitality in these wonderful conference 
facilities in Waseda University. It is remarkable how the 
organizing team brought together mathematicians from 
all over Japan and spearheaded the effort to host satellite 
events in a number of other Japanese cities outside of 
Tokyo, including Kyoto. 

We look forward to having a successful congress, and I 
hope all the attendees will enjoy and benefit from ICIAM 
2023 in Tokyo. 
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Welcome to ICIAM 2023

ICIAM 2023 is organized by the Japan Society for 
Industrial and Applied Mathematics (JSIAM), the 
Mathematical Society of Japan (MSJ), and the Science 
Council of Japan (SCJ).

In April 1990, JSIAM was established to support and 
collaborate activities related to applied mathematical 
research, industry, and education in Japan. JSIAM 
oversees the editing of the Handbook of Applied 
Mathematics, Asakura Publishing Co., Ltd.

The MSJ was founded in 1877 as Tokyo-Sugaku-Kaisha 
(Tokyo Mathematics Society). It was expanded to Tokyo-
Sugaku-Buturi-Kaisha (Tokyo Mathematical and Physical 
Society), and later to the Physico-Mathematical Society 
of Japan. In 1946, the society split into The Mathematical 
Society of Japan and The Physical Society of Japan. The 
MSJ oversees the editing of the Encyclopedic Dictionary 
of Mathematics, published by Iwanami Shoten.

In Januar y 1949,  the SCJ was established as the 
representative organization of the Japanese scientific 
community, subsuming the humanities, social sciences, 
life sciences, natural sciences, and engineering.

On behalf of the Japanese scientific community, the 
organizers of ICIAM 2023 warmly welcome participants 
from over 87 countries to Tokyo, Japan, where the 
event will be held from August 20th to 25th. Until last 
September, due to Covid-19, it was not possible to predict 
the conference format for ICIAM 2023. Fortunately, ICIAM 
2023 will be held in person. In addition, all sessions will 
be available for online participation. The organizers 
of ICIAM 2023 eagerly anticipate the engagement of 
participants in fruitful exchanges of research ideas.

ICIAM 2023 will feature 27 invited talks, one Olga Taussky-
Todd plenary lecture, six plenary talks from ICIAM prize 
recipients, and two plenary public lectures. These, 
together with 477 mini-symposia, will encompass almost 
4,000 talks, more than 1,100 contributed talks, and 
approximately 400 poster presentations. Approximately 
20 exhibitions will be held.

Shin’ichi Oishi
Congress Director, ICIAM 
2023
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Thanks to the Tokyo Convention and Visitors Bureau 
(TCVB), we are able to provide financial support for 
registration fees, accommodation, and travel expenses 
for approximately 500 attendees from around the 
world. The organizers would like to extend their sincere 
thanks to the presenters of talks, as well as to the ICIAM 
officers led by President Yuan Ya-xiang, the members of 
the scientific program committee chaired by Professor 
Yasumasa Nishiura, and the members of the local 
programming committee headed by Professor Takeshi 
Ogita. Additionally, they express their gratitude to SIAM 
for managing the SIAM prize lectures, and organizing 
several mini-symposia based on SIAM activities.

ICIAM 2023’s venue at Waseda University has been 
provided free of charge. This has enabled us to set 
the registration fee at a reasonable price. In 1882, just 
five years after the foundation of the MSJ, Waseda 
University was founded by Okuma Shigenobu. Okuma 
served two terms as the Prime Minister of Japan, and 
promoted numerous scientific research initiatives and 
events. Notably, he gathered support for Shirase Nobu 
to explore the Antarctic. Shirase started his exploration 
in 1910, but was unable to reach the Geographic South 
Pole. One year before, in 1909, the Faculty of Science 
and Engineering at Waseda University was established 
at Waseda’s main campus. This was achieved through 
Okuma’s philosophy. He believed that scientific and 
engineering innovations are necessary for maintaining a 
healthy society. However, establishing and managing a 
Faculty of Science and Engineering at a private university 
posed a challenge in Japan 125 years ago. Fortunately, 
due to strong support from Takeuchi Meitaro, the 

Faculty of Science and Engineering was able to take off. 
Incidentally, Takeuchi was the founder Komatsu Ltd., 
and the first commercially available automobile in Japan 
bears part of his name. This car was completed in 1914, 
and was named the DAT or Datsun. The letter ‘T’ comes 
from Takeuchi. In 1934, the company became Nissan. 
In 1949, the same year that the SCJ was founded, the 
Department of Mathematics was established within 
the Faculty of Science and Engineering. In 1967, the 
Faculty of Science and Engineering relocated to the 
Nishi-Waseda Campus in the Shinjuku ward of Tokyo, 
which is located approximately 15 minutes, by foot, 
from the main campus. In 2007, the Department of 
Applied Mathematics was established within the Faculty 
of Science and Engineering. The current President of 
Toyota, Koji Sato, graduated from the Faculty of Science 
and Engineering at Waseda University. The current Prime 
Minister of Japan, Fumio Kishida, is also a graduate of 
Waseda University.

The organizers would like to once again extend their 
gratitude to TCVB for their support in various aspects 
related to ICIAM 2023, including their generous provision 
of complimentary Tokyo sightseeing tours.

The organizers would like to thank everyone who 
supported ICIAM 2023, with special recognition to the 
Secretariat Group led by Professor Naoya Yamanaka, 
for their contribution in making ICIAM 2023 a vibrant 
platform for researchers in industrial and applied 
mathematics.

4
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Student Research 
Programs in 
Collaboration with 
Industry

This article introduces a student research program with 
industrial projects in mathematics, called “g-RIPS-Sendai”, 
which has been held in Japan since 2018. The Research in 
Industrial Projects for Students (RIPS) program is a long-
time activity held at the Institute for Pure and Applied 
Mathematics (IPAM), at the University of California, 
Los Angeles (UCLA) http://www.ipam.ucla.edu/
programs/student-research-programs/ .

In 2017, after holding discussions with people at IPAM, 
we decided to start a similar program in Japan. After 
establishing it as a “graduate-level” program (g-RIPS) 
considering school calendars in Japan, we have been 
continuing and extending this program in collaboration 
with IPAM and Japanese industrial enterprises.

This program offers graduate students in mathematics 
and related areas stimulating opportunities to work on 
realistic research projects in industries. Students from 
Japan and the U.S. work in cross-cultural teams for eight 
weeks in the summer on research problems provided 
by industrial partners. Workplaces for the projects are 
allocated at the Katahira campus of Tohoku University. 
Hotel accommodations are provided in Sendai city. 
Projects involving both analytic and computational 
aspects are of intense interest to industrial partners. They 
are not merely easy challenges for graduate students. 
Each team usually includes two students from the U.S. 
and two from Japan, who are supported continuously 
by industrial mentor(s) from the industrial partner and 
academic mentor(s) from Tohoku University. English is 
the only language used during the program. Students 
come from different backgrounds and have different 
expertise and usually complement each other. After 
an initial learning phase, the students define the goals 
and milestones of the project. They work diligently 
with various kinds of support from mentors toward 

Hiroshi Suito

Tohoku University, Japan
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presenting their progress at the mid-term and final 
presentations with complete final reports. During the 
program, students have other opportunities to visit 
industrial partners’ firms or institutions and to participate 
in Japanese language and culture courses. After starting 
this program in 2018, we were compelled to cancel it in 
2020 because of the COVID-19 pandemic. Nevertheless, 
we held the program in online-style, managing the time 
difference between the U.S. and Japan in 2021, and 
subsequently resuming the in-person style in 2022.

We are grateful to our industrial partners, who have 
been providing research topics, necessary datasets, 
funding for student accommodations, and other forms 
of support. Our industrial partners, Fujitsu Co. Ltd., 
IHI Corp., Mitsubishi Electric Corp., and NEC Corp. are 
all major Japanese companies. F-MIRAI is a research 
center established at Tsukuba University by Toyota 
Motor Corporation. A list of the project titles so far in 
the program is presented below with corresponding 
partners.

FY2018:
	z F-MIRAI: Design for the next-generation energy and 
mobility platform.
	z NEC: Reliable wireless networking systems for the 
industrial internet-of-things (IoT).

FY2019:
	z F-MIRAI-A: Design for the next-generation mobility 
service in suburban areas – Mobility service for a 
university campus.
	z F-MIRAI-B: Design for the next-generation mobility 
service in suburban areas – Mobility service for 
hospital guests.
	z FUJITSU: Resolving real-world issues by "Digital 
Annealer".
	z NEC: Combinatorial optimization using quantum 
annealing.

FY2021:
	z F-MIRAI: Design for next-generation mobility 
service in suburban areas.
	z MITSUBISHI ELECTRIC, Advanced Technology 
R&D Center: Development of a mapping space for 
intuitive teleoperation with heterogeneous devices 
of multiple types.

	z MITSUBISHI ELECTRIC, Information Technology 
R&D Center: Optimization of wireless base station 
placement as an essential foundation for our future 
IoT society.
	z NEC: Annealing machine application to artificial 
neural networks.

FY 2022:
	z F-MIRAI: Mathematical approaches for mobility 
services in suburban areas.
	z MITSUBISHI ELECTRIC, Advanced Technology R&D 
Center: Construction for incomplete map matching 
based on local and global geometries.
	z MITSUBISHI ELECTRIC, Information Technology R&D 
Center: Multi-objective optimization for best early 
prediction of extreme weather events.
	z NEC:  Application of  anneal ing machines to 
production planning optimization.

FY 2023:
	z FUJITSU: Enhancing the explainability of modern AI.
	z IHI: Mathematics for trajectory extrapolation using 
vehicle and human traffic data toward zero traffic 
fatalities.
	z MITSUBISHI ELECTRIC, Advanced Technology R&D 
Center: Construction of metrics for map matching 
between travel trajectories and map graphs.
	z MITSUBISHI ELECTRIC, Information Technology 
R&D Center: Novel technique to estimate wave 
spectra using ocean HF radar for environmental 
monitoring.
	z N E C ,  D at a  S c i e n ce  R e s e a rc h  L a b o rato r i e s : 
A u t o m a t e d  n e g o t i a t i o n  f o r  s u p p l y  c h a i n 
management.

This program offers several different values for both 
students and industrial partners. For students, the 
program provides opportunities to be exposed to 
real-world problems and to grasp ideas about how 
mathematicians work in diverse industries. Students also 
gain valuable experience through collaboration with 
other students from a broad scope of specialties. The 
international and intercultural environment enhances 
their experiences with diversity. For industrial partners, 
the program provides chances to challenge themselves 
with new mathematical approaches and fresh ideas from 
young students, both for their own specific problems 

6
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and for problems that are commonly confronted in the 
same business fields.

We have observed several different outcomes from this 
program. Sometimes projects have continued between 
the industrial partner and the team members after the 
program period has ended. Those and other efforts 
have been eventually published in scientific journals or 
introduced as presentations at international conferences. 
At other times, projects have been transformed into 
collaborative research between the company and the 

university researchers. Moreover, some students have 
gained employment in participating companies. These 
various outcomes are exciting characteristics of the 
program.

Par t ic ipants  in  this  program gather  f rom many 
universities in both countries. Tohoku University will 
strengthen such activities and make appropriate 
contributions to enhancing collaborative activities 
between mathematics and industries.
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Interdisciplinary 
Elements Between 
Mathematics and Other 
Scientific Disciplines

Introduction

I come from a physics background, particularly, nonlinear 
and nonequilibrium statistical physics. Around 1977, I 
began exploring chaotic phenomena and then started 
to learn ergodic theorems, diffeomorphisms, and several 
types of stabilities, such as structural stability, attractors, 
strange attractors, and chaos within a framework of 
nonlinear dynamical systems (both topological and 
measure-theoretic), in the mathematics literature. I 
enthusiastically researched phenomenological chaos 
with help from the related mathematics. Fortunately, I 
identified several new mathematical phenomena such as 
noise-induced order1 and chaotic itinerancy.2, 3 Although 
I was progressing in chaos research, I decided to apply 
the mathematical theories of chaos in understanding the 
higher functions of the brain. 

The standpoint that I took in brain science studies was 
to make a mathematical model of neural dynamics 
in terms of chaotic dynamical systems and then 
extract mathematical structures from experimental 
or numerical data. The purpose of this study was to 
construct an adequate language for understanding 
the brain, following Gelfand.4 Three typical elements 
of interdisciplinary study in applied mathematics 
could be identified. This article on the elements in 
applied mathematics is designed to encourage young 
researchers to identify their own research methods.

Some Mathematical Elements

What is the difference between mathematics and other 
scientific disciplines? First, we must describe other 
scientific disciplines to be able to clearly elucidate 
the characteristics of mathematics. Some examples 
of research areas in physics include the treatment 

Ichiro Tsuda
Chubu University, Japan
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of the motion of objects and their universal laws. 
Modern physics began with Galileo’s experiments for 
the motion of an object, including his later thought 
experiment, which were further developed via Newton’s 
mathematical formulation of the motion of objects. 
Physics has since been established as the most rigorous 
natural science via mathematical formulation, which 
enables us to use experimental facts as a predictive 
set. This development was followed by the discoveries 
of electromagnetism, thermodynamics and statistical 
mechanics, hydrodynamics, relativity theory, quantum 
mechanics, and field theory. In addition, geophysics 
has developed as a complex physical system,5 to clarify 
the multiple relationships between the factors that 
constitute the global environment. Chemistry has 
treated the molecular mechanisms of the change of 
materials via molecular interactions at the level of 
a complex of molecules. However, chemistry is not 
described in mathematical terms, except in a few 
research areas such as quantum chemistry. The main 
purpose of chemistry is the synthesis of materials. 
Similarly, biology is concerned with the molecular 
mechanisms of life, including the origin of life and also 
the relationship between structure and function in 
biological organisms. In addition, biology has clarified 
the evolution in the behaviors of living organisms 
leading to human behaviors. All these disciplines belong 
to natural science. 

However,  t he  soc ia l  a nd hu man sc iences  have 
investigated individual behaviors and mental states, 
whereby the structure and dynamics of the society itself 
could become an object of study. Although human 
behaviors can be quantified by mathematics, such as 
economics, most disciplines do not use mathematics 
but instead use natural languages in each specific 
formalization.

Finally, engineering applies mathematics, physics, and 
chemistry to develop industrial technologies. One of 
engineering’s central concepts is optimization, whereby 
the systems are controlled to achieve given goals.

Mathematics is based on the different elements from 
these disciplines. The term “mathematics” stems from 
Greek, μάθημα (or its plural form μάθηματα), which 
means what is learned, or knowledge itself. Thus, 

mathematics should include all human thought and 
behavior. In ancient days, the need for people (or their 
kings) to measure their occupied territory could be 
realized by evaluating small computable areas, such 
as the areas of a right triangle, rectangle, or square, by 
drawing parallel lines using the Pythagorean theorem, 
which later led to integral calculus in the calculation 
of areas, and also to geometry in the division of areas. 
Furthermore, counting numbers is based on the mental 
process of identification of different objects, by viewing 
them as the same class, that is, categorization, which may 
have led to algebra. 

Another mathematical element is logical thinking. This 
element dates to the ancient Greek mathematician 
Euclid and his influential Greek text ΣτοιΧει̃α, which 
was translated into English as Elements. In my personal 
opinion, Elements provided proofs for a method that 
correctly operationalizes mental processes based 
on postulates or axioms. Boole  and Turing later 
demonstrated the relationship between mathematics 
and thoughts. Boole’s 1854 book, An Investigation of the 
Laws of Thought on Which Are Founded the Mathematical 
Theories of Logic and Probabilities,6 reconstructed 
probability theory in terms of only two numbers, 0 and 
1, which can express a truth value of logical thinking. 
Turing then investigated thoughts by simplifying their 
processes to “calculations on paper” and published 
an article entitled “On computable numbers, with an 
application to the Entscheidungsproblem”7 in 1937, 
which became the basis of modern computing. In 
this connection, the first computer must have been a 
“computor”.

Hence, mathematics embodied people’s demands, 
intentions, and thoughts during its early development, 
and then it became an abstract and universal science. 
In this way, mathematics can be viewed as a common 
language underlying all other disciplines and thus can 
be used to contribute to other disciplines in science and 
engineering. 

Three Elements in the Interdisciplinary 
Research Areas Between Mathematics 
and Other Scientific Disciplines

This section describes three typical elements of 
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interdisciplinary studies between mathematics and 
other scientific disciplines: that is, applying existing 
theorems and techniques; clarifying the mechanisms 
of a target phenomenon using a mathematical model; 
finding mathematical structures embedded in the target 
phenomenon and thereby providing a new perspective 
of the phenomena.

The first element clarifies the mechanisms of observed 
p h e n o m e n a ;  t h e r e fo r e ,  w e  i d e n t i f y  a d e q u a t e 
mathematical theorems to apply in solving problems. 
The key aspect of this element is the identification of 
the most appropriate mathematical language for each 
phenomenon. Therefore, mathematical techniques, 
comprehension of the phenomenon, and techniques 
for mathematically representing these phenomena are 
necessary. 

Newton’s  discover y of  di f ferential  and integral 
calculus, simply calculus, is the most profound and 
influential example of work in the second element of 
interdisciplinary research. Newton invented calculus in 
creating a mathematical model for the laws of motion. 
Similarly, Fourier invented Fourier analysis to clarify the 
mechanisms of complex spatiotemporal changes in 
states including periodic behaviors, such as waves and 
heat conduction. René Thom8 invented catastrophe 
theory to clarify the mechanism of morphogenesis and 
various complex changes of states appearing in human 
society. 

One of my own studies focuses on the functional 
differentiation of the brain. By constructing a new 
framework of constrained variational principles for the 
developmental process of the brain from fetus to adult, 
we applied a theory of self-organization with constraints 
to the network of dynamical systems including reservoir 
computers. We then introduced a genetic algorithm to 
change dynamical systems to adapt to given constraints 
in this framework.9 Our target was a (random) network of 
a family of dynamical systems. We succeeded in realizing 
various types of functional differentiations, such as 
the formation of functional modules, the emergence 
of neuron-like and glial cell-like functional units, and a 
sensation-specificity of neurons.10, 11

Finally, examples of the third element of interdisciplinary 

research can typically be found in life sciences, including 
medical science. Mathematics may traditionally 
be considered an inadequate language for the life 
sciences in Gelfand’s sense. Nevertheless, following the 
development of data science and artificial intelligence, 
the use of mathematics has become crucial and even 
decisive in analyzing the complex phenomena of living 
systems. 

Therefore, life science is becoming a part of mathematical 
science by force of circumstance.12, 13 My own research 
clarifying the functional meaning of dynamic associative 
memory belongs to this class. Milnor-like attractors have 
been extracted in the nonequilibrium neural networks 
for associative memories, leading to the new notion 
of chaotic itinerancy, which plays a crucial role in the 
dynamic association of memories, that is, the formation 
of episodic memories.14 Here, chaotic itinerancy 
provides different dynamics from conventional attractor 
dynamics. This dynamic transition is consistent with 
the experimental findings of Walter Freeman and his 
colleagues15 in olfactory bulbs during olfaction learning. 
In addition, Cantor sets and iterated function systems 
in mathematical models for the hippocampus were 
extracted and verified by a slice experiment of the rat’s 
hippocampus.16, 17 It is crucial to identify the embedded 
dynamical systems in complex experimental data and 
even in massive data obtained by computer simulations 
of a mathematical model for both understanding 
complex phenomena and providing new insights into 
those phenomena.

Here, I  have discussed three elements of applied 
mathematics in interdisciplinary research. I hope that 
young applied mathematicians will identify their own 
methods for mathematical applications as an adequate 
language for other scientific disciplines, which will 
thereby contribute to mathematics itself and also to 
society.
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The Challenge of 
Developing Mathematics 
for Industry
Fostering the Diversity and Creativity 
of Mathematics in Japan

Among the four main islands of Japan, Kyushu is the 
westernmost, with an area of approximately 37,000 km2 
and a population of 12.6 million. Fukuoka, where Kyushu 
University is located, is the largest city in Kyushu and is 
situated on its northern coast. In terms of geographical 
advantage, Fukuoka has long been a gateway to 
overseas countries and a prosperous trading city known 
as "Hakata". According to the Chinese history The Book 
of the Later Han, it was already known as the Kingdom of 
"Na" in the 1st century AD, and its envoy received a gold 
seal from the Emperor of China. Miraculously, the gold 
seal was unearthed about 240 years ago and is preserved 
in the Fukuoka City Museum. Incidentally, the name of 
the main campus of Kyushu University, the Ito Campus, 
originates from the Kingdom of "Ito", which existed in 
this region in the same era   as the Kingdom of Na.

Japan was a loose union of small, regional states since 
that early period, and strong overall governance was 
rarely practiced until modern times. Japan has been 
an island nation, overcoming the threat of invasion on 
several occasions, and was influenced to some extent 
by the powerful civilization and culture of China but 
kept its distance from it. Each region developed its own 
culture and society. For example, ramen: Each area has 
developed its own, unique ramen, which competes for 
popularity. Sweets, for another example: Each region and 
town has unique confectioneries that it is proud of and 
tries its best to market. Traveling around Japan, you can 
enjoy a great variety of sweets at airports, train stations, 
and expressway service areas. In Fukuoka, in the north 
of Kyushu, Torimon made from wheat and bean paste 
is popular, while in Kagoshima, in the south, Karukan 
made from yams is popular. Both have a delicate taste 
but are completely different. In the past 150 years, the 
concentration of the Japanese population in Tokyo has 

Kenji Kajiwara
Kyushu University, Japan
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increased, and many local products have been brought 
together in Tokyo, leading to a loss of understanding 
of the diversity of Japan. This booklet is called Tokyo 
Intelligencer, but you cannot understand Japan by 
looking at Tokyo alone. Please take this opportunity to 
travel around the countryside. You can enjoy a great 
variety of delicious food in each region.

This diversity in Japan can also be seen in mathematics. 
The Institute of Mathematics for Industry (IMI) at 
Kyushu University conducts mathematical research 
that is somewhat different from that of other research 
institutions in mathematics. Mathematics for Industry 
(MfI) is an idea of a new area of research in mathematics 
that serves as a foundation of future technologies and 
which as well is valuable as mathematics in itself. MfI 
has been created through the challenge of responding 
to the demands of society and industry by reorganizing 
and merging pure and applied mathematics into flexible 
and versatile forms. The mission and activities of the IMI 
toward that end are introduced below.

Mission 1: Promotion of Research and 
Collaboration with Industry and Diverse 
Scientific Fields

Based on the idea of MfI, our first mission is to contribute 
to society by identifying research problems from real 
problems and constructing new mathematics to help 
solve those problems. In fact, in FY 2021 we carried out 
25 joint research projects with industry. Our aim is not 
just to solve mathematical problems arising in industry, 
but also to meet the demands of industry and complete 
social implementation. For example, the IMI has been 
involved in the smartification of a pharmaceutical 
company's factory from the planning stage and has 
introduced both classical and quantum computers and 
developed a state-of-the-art mathematical algorithm to 
run on them. In December 2022, the Division of Fujitsu 
Mathematical Modelling for Decision Making was 
established with the support of the global IT company 
Fujitsu, and systematic joint research is under way.

More importantly, mathematics generated through 
such activities should be developed into attractive 
mathematics for researchers to work on and develop 
a new research area. This is the most distinctive and 

important mission of the IMI. Toward this end, the first 
priority of the IMI is to promote deep mathematical 
research that is both fundamental and cutting-edge. The 
IMI therefore includes researchers in pure mathematics 
and promotes the active involvement of mathematics 
researchers with various orientations, both pure and 
applied, in cross-disciplinary and industry–academia 
collaborations. Whether the problems to be solved are 
within or outside of mathematics, however, mathematics 
is nothing but mathematics, and it makes little sense to 
distinguish between different types of problems.

The IMI will conduct the “Mathematics for Industry 
Platform”, a network spread over Japan together with 
cooperative mathematics institutes for matching the 
needs of industry and various scientific fields, and the 
seeds of mathematics with the support of the Ministry 
of Education, Culture, Sports, Science and Technology 
(MEXT) of Japan. It will provide a one-stop service for 
those who need the involvement of mathematics in their 
research and development.

Mission 2: Joint Use Research

Another important mission of the IMI is to support 
the development of emerging mathematics that 
could become the seeds of industrial and applied 
mathematics. The IMI has been selected as a Joint Usage 
/ Research Center  by MEXT, and conducts 20 – 25 joint 
research projects such as workshops, short-term joint 
research, and short-term fellowships every year through 
open calls for proposals. The unique feature is that 
participants from companies are required in principle to 
attend, thus shaping the direction of the development 
of mathematics toward an awareness of industry and 
society. Recently, the IMI has been conducting one or 
two international research projects per year.

Mission 3: Human Resource 
Development

There is a strong need worldwide for people with a 
high level of mathematical knowledge that can be used 
not only in academia but also in industry and society. 
To achieve a high degree of mathematical knowledge, 
it is necessary to study mathematics in depth for a 
certain period of time, but it is not easy to balance 

13



TOKYO  Intelligencer

this requirement with the development of a vision of 
mathematics for various scientific fields and industry. The 
IMI has prepared several mechanisms to bring students 
majoring in mathematics into contact with other 
fields and industry. One is the IMI Colloquium, where 
representatives of companies give lectures on the state 
of mathematics in their fields. There is also a Study Group 
Workshop, where students work on problems presented 
by companies for a week. A long-term internship, 
specially designed for Ph.D. students, is another means 
that Kyushu University has pioneered in Japan for 
mathematics students. To make those mechanisms more 
systematic and practical, the IMI runs the Joint Graduate 
School of Mathematics for Innovation in collaboration 
with the Graduate School of Mathematics, the Graduate 
School of Information Science and Electrical Engineering, 
and the Graduate School of Economics, and implements 
the WISE Program (Doctoral Program for World-leading 
Innovative & Smart Education) of MEXT. The program 
requires students to undertake joint research in 
laboratories in diverse fields and long-term internships  
and aims to nurture human resources capable of using 
mathematics to make innovations in other fields and 
industry.

Mission 4: International Collaborations

There is a strong pioneering community of industrial 
and applied mathematics in the USA, the Society of 
Industrial and Applied Mathematics (SIAM); and in 
Europe, the European Consortium of Mathematics for 
Industry (ECMI), leading the world community. The IMI 

has therefore set its sights on international collaborative 
activities with an emphasis on the Asia Pacific region. 
Toward this end, it has established the Asia Pacific 
Consortium of Mathematics for Industry (APCMfI) in 
cooperation with researchers in Australia, New Zealand, 
and East and Southeast Asian countries. The APCMfI 
organizes an annual international conference, the 
Forum “Math-for-Industry”,  on a rotating basis among 
the member institutions. It has also begun to raise its 
level of international recognition by organizing mini-
symposiums at SIAM and ECMI events this year. To 
promote collaborations between Australia and Japan, 
where the community is relatively large, the IMI has 
established the Australia Branch  at La Trobe University 
in Melbourne. The IMI Australia Branch is staffed by a 
faculty member employed jointly by La Trobe University 
and carries out a variety of joint activities.

In the week following ICIAM 2023, August 29th – 
September 1st, the IMI will host the Forum "Math-for-
Industry" 2023—MfI2.0—as a satellite meeting of 
ICIAM2023. It will bring together a wide range of talks 
on hot topics in MfI from Japan and around the world, 
providing an opportunity to share the state-of-the-art 
and future perspectives of MfI at a location only 2 hours 
by plane from Tokyo, with over 60 daily flights, and then 
only 20 minutes by subway from the airport to the venue. 
Partial attendance is welcome. For details, please refer to 
the webpage http://apcmfi.org/fmfi2023/index.
html. On this occasion, why not visit the historic city of 
Fukuoka, for fascinating food and mathematics?
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Double Exponential 
Transformation: A Quick 
Review of a Japanese 
Tradition

Abstract

This article is a short introduction to numerical methods 
using the double exponential (DE) transformation, such 
as tanh-sinh quadrature and DE-Sinc approximation. 
The DE-based methods for numerical computation have 
been developed intensively in Japan and the objective 
of this article is to describe their history in addition to the 
underlying mathematical ideas.
Keywords: Double exponential transformation, DE 
integration formula, tanh-sinh quadrature, DE-Sinc 
method.

1   Introduction

The double exponential (DE) transformation is a generic 
name of variable transformations (changes of variables) 
used effectively in numerical computation on analytic 
functions, such as numerical quadrature and function 
approximation. A typical DE transformation is a change 
of variable x to another variable t by 

Double Exponential Transformation:
A Quick Review of a Japanese Tradition

Kazuo Murota* and Takayasu Matsuo†

February 3, 2023

Abstract
This article is a short introduction to
numerical methods using the double
exponential (DE) transformation, such as
tanh-sinh quadrature and DE-Sinc
approximation. The DE-based methods for
numerical computation have been developed
intensively in Japan and the objective of this
article is to describe their history in addition
to the underlying mathematical ideas.
Keywords: Double exponential
transformation, DE integration formula,
tanh-sinh quadrature, DE-Sinc method.
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The double exponential (DE) transformation
is a generic name of variable transformations
(changes of variables) used effectively in
numerical computation on analytic functions,
such as numerical quadrature and function
approximation. A typical DE transformation
is a change of variable x to another variable t
by x = ϕ(t) with the function

ϕ(t) = tanh
(
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The term “double exponential” refers to the
property that the derivative

ϕ′(t) =
π
2 cosh t

cosh2(π2 sinh t)

decays double exponentially

ϕ′(t) ≈ exp
(
−π

2
exp |t|

)
(1)

as |t| → ∞.
This article is a short introduction to
numerical methods using DE
transformations such as the double
exponential formula (tanh-sinh quadrature)
for numerical integration and the DE-Sinc
method for function approximation. The
DE-based methods for numerical
computation have been developed
intensively in Japan [5, 7, 34, 38], and a
workshop titled “Thirty Years of the Double
Exponential Transforms” was held at RIMS
(Research Institute for Mathematical
Sciences, Kyoto University) on September
1–3, 2004 [14]. The objective of this article
is to describe the history of the development
of the DE-based methods in addition to the
underlying mathematical ideas.
This article is written in memory of
Professors Masao Iri (President of Japan
SIAM, 1996), Masatake Mori (President of
Japan SIAM, 1998), and Masaaki Sugihara
(Vice President of Japan SIAM, 2008).
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The term “double exponential” refers to the
property that the derivative

ϕ′(t) =
π
2 cosh t

cosh2(π2 sinh t)

decays double exponentially

ϕ′(t) ≈ exp
(
−π

2
exp |t|

)
(1)

as |t| → ∞.
This article is a short introduction to
numerical methods using DE
transformations such as the double
exponential formula (tanh-sinh quadrature)
for numerical integration and the DE-Sinc
method for function approximation. The
DE-based methods for numerical
computation have been developed
intensively in Japan [5, 7, 34, 38], and a
workshop titled “Thirty Years of the Double
Exponential Transforms” was held at RIMS
(Research Institute for Mathematical
Sciences, Kyoto University) on September
1–3, 2004 [14]. The objective of this article
is to describe the history of the development
of the DE-based methods in addition to the
underlying mathematical ideas.
This article is written in memory of
Professors Masao Iri (President of Japan
SIAM, 1996), Masatake Mori (President of
Japan SIAM, 1998), and Masaaki Sugihara
(Vice President of Japan SIAM, 2008).
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2   DE Formula for Numerical Integration

The DE formula for numerical integration invented 
by Hidetosi Takahasi and Masatake Mori [37] was first 
presented at the RIMS workshop "Studies on Numerical 
Algorithms,'' held on October 31–November 2, 1972. 
The celebrated term "double exponential formula" was 
proposed there, as we can see in the proceedings paper 
[36].
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The DE formula was motivated by the fact
that the trapezoidal rule is highly effective
for integrals over the infinite interval
(−∞,+∞). For an integral

I =
∫ 1

−1
f (x) dx,

for example, we employ a change of variable
x = ϕ(t) using some function ϕ(t) satisfying
ϕ(−∞) = −1 and ϕ(+∞) = 1, and apply the
trapezoidal rule to the transformed integral

I =
∫ +∞

−∞
f (ϕ(t))ϕ′(t) dt,

to obtain an infinite sum of discretization

Ih = h
∞∑

k=−∞
f (ϕ(kh))ϕ′(kh). (2)

A finite-term approximation to this infinite
sum results in an integration formula

I(N)
h = h

N∑
k=−N

f (ϕ(kh))ϕ′(kh). (3)

Such combination of the trapezoidal rule
with a change of variables was conceived by
several authors [2, 24, 25, 35] around 1970.
The error I − I(N)

h of the formula (3) consists
of two parts, the error ED ≡ I − Ih incurred
by discretization (2) and the error
ET ≡ Ih − I(N)

h caused by truncation of an
infinite sum Ih to a finite sum I(N)

h .

The major findings of Takahasi and Mori
consisted of two ingredients. The first was
that the double exponential decay of the
transformed integrand f (ϕ(t))ϕ′(t) achieves
the optimal balance (or trade-off) between
the discretization error ED and the truncation
error ET. The second finding was that a
concrete choice of

ϕ(t) = tanh
(
π

2
sinh t

)
(4)

is suitable for this purpose thanks to the
double exponential decay shown in (1). With
this particular function ϕ(t) the formula (3)
reads

I(N)
h = h

N∑
k=−N

f
(
tanh
(
π

2
sinh(kh)

))

× (π/2) cosh(kh)
cosh2((π/2) sinh(kh))

,

which is sometimes called “tanh-sinh
quadrature.” The error of this formula is
estimated roughly as

∣∣∣I − I(N)
h

∣∣∣ ≈ exp(−CN/ log N) (5)

with some C > 0. The DE formula has an
additional feature that it is robust against
end-point singularities of integrands.
The idea of the DE formula can be applied to
integrals over other types of intervals of
integration. For example,

I =
∫ +∞

0
f (x) dx, x = exp

(
π

2
sinh t

)
, (6)

I =
∫ +∞

−∞
f (x) dx, x = sinh

(
π

2
sinh t

)
. (7)

Such formulas are also referred to as the
double exponential formula. The DE
formula is available in Mathematica
(NIntegrate), Python library SymPy, Python
library mpmath, C++ library Boost, Haskell
package integration, etc.

2.2 Optimality
Optimality of the DE transformation (4) was
discussed already by Takahasi and Mori
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Such formulas are also referred to as the
double exponential formula. The DE
formula is available in Mathematica
(NIntegrate), Python library SymPy, Python
library mpmath, C++ library Boost, Haskell
package integration, etc.
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already by Takahasi and Mori [37]. Numerical examples 
also support its optimality. Figure1 (taken from [5]) 
shows the comparison of the DE transformation (4) 
against other transformations

Figure 1: Comparison of the efficiency of
several variable transformations for the inte-
gral
∫ 1

−1
dx/{(x − 2)(1 − x)1/4(1 + x)3/4}; taken

from Mori [5, Fig. 4] with permission from
the European Mathematical Society; u and N
in the figure correspond, respectively, to t and
2N + 1 in the present notation.

[37]. Numerical examples also support its
optimality. Figure 1 (taken from [5]) shows
the comparison of the DE transformation (4)
against other transformations

ϕ(t) = tanh t,

ϕ(t) = tanh
(
π

2
sinh t3

)
,

ϕ(t) = erf(t) =
2
√
π

∫ t

0
exp(−s2) ds

for
∫ 1

−1
dx/{(x − 2)(1 − x)1/4(1 + x)3/4} that

has integrable singularities at both ends of
the interval of integration. The DE formula
converges much faster than others. It is
known that the tanh-rule (using ϕ(t) = tanh t)
has the (rough) convergence rate
exp(−C

√
N), in contrast to exp(−CN/ log N)

in (5) of the DE formula.
The optimality argument of [37], based on
complex function theory, was convincing
enough for the majority of scientists and
engineers, but not perfectly satisfactory for
theoreticians. Rigorous mathematical
argument for optimality of the DE formula
was addressed by Masaaki Sugihara
[28, 29, 30] in the 1980s and 1990s in a
manner comparable to Stenger’s framework
[26] for optimality of the tanh rule. It is

shown in [30] (also [42]) that the DE
formula is optimal with respect to a certain
class (Hardy space) of integrand functions.
In principle, for each class of integrand
functions we may be able to find an optimal
quadrature formula, and the optimal formula
naturally depends on our choice of the
admissible class of integrands. Thus the
optimality of a quadrature formula is only
relative. However, it was shown by Sugihara
that no nontrivial class of integrand functions
exists that admits a quadrature formula with
smaller errors than the DE formula. We can
interpret this fact as the absolute optimality
of the DE formula.

2.3 Fourier-Type Integrals
For Fourier-type integrals such as

I =
∫ +∞

0
f1(x) sin x dx,

the DE formula like (6) is not very
successful. To cope with Fourier-type
integrals, a novel technique, in the spirit of
DE transformation, was proposed by Ooura
and Mori [22, 23]. In [22] they proposed to
use

ϕ(t) =
t

1 − exp(−K sinh t)

(K > 0), which maps (−∞,+∞) to (0,+∞) in
such a way that (i) ϕ′(t)→ 0 double
exponentially as t → −∞ and (ii) ϕ(t)→ t
double exponentially as t → +∞. The
proposed formula changes the variable by
x = Mϕ(t) to obtain

I = M
∫ +∞

−∞
f1(Mϕ(t)) sin(Mϕ(t))ϕ′(t) dt,

to which the trapezoidal rule with equal
mesh h is applied, where M and h are chosen
to satisfy Mh = π. The transformed
integrand decays double exponentially
toward t → −∞ because of the factor ϕ′(t)
and also toward t → +∞ because Mϕ(t) for
t = kh (sample point of the trapezoidal rule)
tends double exponentially to

3
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 (sample point 
of the trapezoidal rule) tends double exponentially 
to Mt = Mkh = kπ, at which sine function

vanishes. Another (improved)
transformation function

ϕ(t) =
t

1 − exp(−2t − α(1 − e−t) − β(et − 1))
,

is given in [23], where β = 1/4 and
α = β/

√
1 + M log(1 + M)/(4π).

2.4 IMT Rule
In 1969, prior to the DE formula, a
remarkable quadrature formula was
proposed by Masao Iri, Sigeiti Moriguti, and
Yoshimitsu Takasawa [2]. The formula is
known today as the “IMT rule,” which name
was introduced in [35] and used in [1].
For an integral I =

∫ 1

0
f (x) dx over [0, 1], the

IMT rule applies the trapezoidal rule to the
integral I =

∫ 1

0
f (ϕ(t))ϕ′(t) dt resulting from

the transformation by

ϕ(t) =
1
Q

∫ t

0
exp
[
−
(
1
τ
+

1
1 − τ

)]
dτ,

where Q =
∫ 1

0
exp
[
−
(

1
τ
+ 1

1−τ

)]
dτ is a

normalizing constant to render ϕ(1) = 1.
The transformed integrand g(t) = f (ϕ(t))ϕ′(t)
has the property that all the derivatives g( j)(t)
( j = 1, 2, . . .) vanish at t = 0, 1. By the
Euler–Maclaurin formula, this indicates that
the IMT rule should be highly accurate.
Indeed, it was shown in [2] via a complex
analytic method that the error of the IMT
rule can be estimated roughly as
exp(−C

√
N), which is much better than N−4

of the Simpson rule, say, but not as good as
exp(−CN/ log N) of the DE formula.
Variants of the IMT rule have been proposed
for possible improvement [4, 10, 21, 29], but
it turned out that an IMT-type rule,
transforming

∫ 1

0
dx to

∫ 1

0
dt rather than to∫ +∞

−∞ dt, cannot outperform the DE formula.

3 DE-Sinc Methods
Changing variables is also useful in the Sinc
numerical methods. The book by Stenger

[27] in 1993 describes this methodology to
the full extent, focusing on single
exponential (SE) transformations like
ϕ(t) = tanh(t/2). Use of the double
exponential transformation in the Sinc
numerical methods was initiated by Sugihara
[31, 33] around 2000, with subsequent
development mainly in Japan. Such
numerical methods are often called the
DE-Sinc methods. The subsequent results
obtained in the first half of the 2000s are
described in [5, 7, 34].

3.1 Sinc Approximation
The Sinc approximation of a function f (x)
over (−∞,∞) is given by

f (x) ≈
N∑

k=−N

f (kh)S (k, h)(x), (8)

where S (k, h)(x) is the so-called Sinc
function defined by

S (k, h)(x) =
sin[(π/h)(x − kh)]

(π/h)(x − kh)

and the step size h is chosen appropriately,
depending on N. The technique of variable
transformation x = ϕ(t) is also effective in
this context. By applying the formula (8) to
f (ϕ(t)) we obtain

f (ϕ(t)) ≈
N∑

k=−N

f (ϕ(kh))S (k, h)(t),

or equivalently,

f (x) ≈
N∑

k=−N

f (ϕ(kh))S (k, h)(ϕ−1(x)).

To approximate f (x) over [0, 1], for example,
we choose

ϕ(t) =
1
2

tanh
t
2
+

1
2
, (9)

ϕ(t) =
1
2

tanh
(
π

2
sinh t

)
+

1
2
, (10)

etc. The methods using (9) and (10) are often
called the SE- and DE-Sinc approximations,
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it turned out that an IMT-type rule,
transforming
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dt rather than to∫ +∞

−∞ dt, cannot outperform the DE formula.

3 DE-Sinc Methods
Changing variables is also useful in the Sinc
numerical methods. The book by Stenger

[27] in 1993 describes this methodology to
the full extent, focusing on single
exponential (SE) transformations like
ϕ(t) = tanh(t/2). Use of the double
exponential transformation in the Sinc
numerical methods was initiated by Sugihara
[31, 33] around 2000, with subsequent
development mainly in Japan. Such
numerical methods are often called the
DE-Sinc methods. The subsequent results
obtained in the first half of the 2000s are
described in [5, 7, 34].

3.1 Sinc Approximation
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over (−∞,∞) is given by
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where S (k, h)(x) is the so-called Sinc
function defined by
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and the step size h is chosen appropriately,
depending on N. The technique of variable
transformation x = ϕ(t) is also effective in
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f (ϕ(t)) we obtain
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or equivalently,
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etc. The methods using (9) and (10) are often
called the SE- and DE-Sinc approximations,
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Figure 1: Comparison of the efficiency of
several variable transformations for the inte-
gral
∫ 1

−1
dx/{(x − 2)(1 − x)1/4(1 + x)3/4}; taken

from Mori [5, Fig. 4] with permission from
the European Mathematical Society; u and N
in the figure correspond, respectively, to t and
2N + 1 in the present notation.

[37]. Numerical examples also support its
optimality. Figure 1 (taken from [5]) shows
the comparison of the DE transformation (4)
against other transformations

ϕ(t) = tanh t,

ϕ(t) = tanh
(
π

2
sinh t3

)
,

ϕ(t) = erf(t) =
2
√
π

∫ t

0
exp(−s2) ds

for
∫ 1

−1
dx/{(x − 2)(1 − x)1/4(1 + x)3/4} that

has integrable singularities at both ends of
the interval of integration. The DE formula
converges much faster than others. It is
known that the tanh-rule (using ϕ(t) = tanh t)
has the (rough) convergence rate
exp(−C

√
N), in contrast to exp(−CN/ log N)

in (5) of the DE formula.
The optimality argument of [37], based on
complex function theory, was convincing
enough for the majority of scientists and
engineers, but not perfectly satisfactory for
theoreticians. Rigorous mathematical
argument for optimality of the DE formula
was addressed by Masaaki Sugihara
[28, 29, 30] in the 1980s and 1990s in a
manner comparable to Stenger’s framework
[26] for optimality of the tanh rule. It is

shown in [30] (also [42]) that the DE
formula is optimal with respect to a certain
class (Hardy space) of integrand functions.
In principle, for each class of integrand
functions we may be able to find an optimal
quadrature formula, and the optimal formula
naturally depends on our choice of the
admissible class of integrands. Thus the
optimality of a quadrature formula is only
relative. However, it was shown by Sugihara
that no nontrivial class of integrand functions
exists that admits a quadrature formula with
smaller errors than the DE formula. We can
interpret this fact as the absolute optimality
of the DE formula.

2.3 Fourier-Type Integrals
For Fourier-type integrals such as

I =
∫ +∞

0
f1(x) sin x dx,

the DE formula like (6) is not very
successful. To cope with Fourier-type
integrals, a novel technique, in the spirit of
DE transformation, was proposed by Ooura
and Mori [22, 23]. In [22] they proposed to
use

ϕ(t) =
t

1 − exp(−K sinh t)

(K > 0), which maps (−∞,+∞) to (0,+∞) in
such a way that (i) ϕ′(t)→ 0 double
exponentially as t → −∞ and (ii) ϕ(t)→ t
double exponentially as t → +∞. The
proposed formula changes the variable by
x = Mϕ(t) to obtain

I = M
∫ +∞

−∞
f1(Mϕ(t)) sin(Mϕ(t))ϕ′(t) dt,

to which the trapezoidal rule with equal
mesh h is applied, where M and h are chosen
to satisfy Mh = π. The transformed
integrand decays double exponentially
toward t → −∞ because of the factor ϕ′(t)
and also toward t → +∞ because Mϕ(t) for
t = kh (sample point of the trapezoidal rule)
tends double exponentially to
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Mt = Mkh = kπ, at which sine function
vanishes. Another (improved)
transformation function

ϕ(t) =
t

1 − exp(−2t − α(1 − e−t) − β(et − 1))
,

is given in [23], where β = 1/4 and
α = β/

√
1 + M log(1 + M)/(4π).

2.4 IMT Rule
In 1969, prior to the DE formula, a
remarkable quadrature formula was
proposed by Masao Iri, Sigeiti Moriguti, and
Yoshimitsu Takasawa [2]. The formula is
known today as the “IMT rule,” which name
was introduced in [35] and used in [1].
For an integral I =

∫ 1
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f (x) dx over [0, 1], the
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integral I =
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dτ is a

normalizing constant to render ϕ(1) = 1.
The transformed integrand g(t) = f (ϕ(t))ϕ′(t)
has the property that all the derivatives g( j)(t)
( j = 1, 2, . . .) vanish at t = 0, 1. By the
Euler–Maclaurin formula, this indicates that
the IMT rule should be highly accurate.
Indeed, it was shown in [2] via a complex
analytic method that the error of the IMT
rule can be estimated roughly as
exp(−C

√
N), which is much better than N−4

of the Simpson rule, say, but not as good as
exp(−CN/ log N) of the DE formula.
Variants of the IMT rule have been proposed
for possible improvement [4, 10, 21, 29], but
it turned out that an IMT-type rule,
transforming

∫ 1

0
dx to

∫ 1

0
dt rather than to∫ +∞

−∞ dt, cannot outperform the DE formula.

3 DE-Sinc Methods
Changing variables is also useful in the Sinc
numerical methods. The book by Stenger

[27] in 1993 describes this methodology to
the full extent, focusing on single
exponential (SE) transformations like
ϕ(t) = tanh(t/2). Use of the double
exponential transformation in the Sinc
numerical methods was initiated by Sugihara
[31, 33] around 2000, with subsequent
development mainly in Japan. Such
numerical methods are often called the
DE-Sinc methods. The subsequent results
obtained in the first half of the 2000s are
described in [5, 7, 34].

3.1 Sinc Approximation
The Sinc approximation of a function f (x)
over (−∞,∞) is given by

f (x) ≈
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where S (k, h)(x) is the so-called Sinc
function defined by

S (k, h)(x) =
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(π/h)(x − kh)

and the step size h is chosen appropriately,
depending on N. The technique of variable
transformation x = ϕ(t) is also effective in
this context. By applying the formula (8) to
f (ϕ(t)) we obtain
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or equivalently,
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To approximate f (x) over [0, 1], for example,
we choose
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etc. The methods using (9) and (10) are often
called the SE- and DE-Sinc approximations,
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numerical methods are often called the
DE-Sinc methods. The subsequent results
obtained in the first half of the 2000s are
described in [5, 7, 34].

3.1 Sinc Approximation
The Sinc approximation of a function f (x)
over (−∞,∞) is given by

f (x) ≈
N∑

k=−N

f (kh)S (k, h)(x), (8)

where S (k, h)(x) is the so-called Sinc
function defined by

S (k, h)(x) =
sin[(π/h)(x − kh)]

(π/h)(x − kh)

and the step size h is chosen appropriately,
depending on N. The technique of variable
transformation x = ϕ(t) is also effective in
this context. By applying the formula (8) to
f (ϕ(t)) we obtain

f (ϕ(t)) ≈
N∑

k=−N

f (ϕ(kh))S (k, h)(t),

or equivalently,

f (x) ≈
N∑

k=−N

f (ϕ(kh))S (k, h)(ϕ−1(x)).

To approximate f (x) over [0, 1], for example,
we choose

ϕ(t) =
1
2

tanh
t
2
+

1
2
, (9)

ϕ(t) =
1
2

tanh
(
π

2
sinh t

)
+

1
2
, (10)

etc. The methods using (9) and (10) are often
called the SE- and DE-Sinc approximations,
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Mt = Mkh = kπ, at which sine function
vanishes. Another (improved)
transformation function

ϕ(t) =
t

1 − exp(−2t − α(1 − e−t) − β(et − 1))
,

is given in [23], where β = 1/4 and
α = β/

√
1 + M log(1 + M)/(4π).

2.4 IMT Rule
In 1969, prior to the DE formula, a
remarkable quadrature formula was
proposed by Masao Iri, Sigeiti Moriguti, and
Yoshimitsu Takasawa [2]. The formula is
known today as the “IMT rule,” which name
was introduced in [35] and used in [1].
For an integral I =

∫ 1

0
f (x) dx over [0, 1], the

IMT rule applies the trapezoidal rule to the
integral I =

∫ 1

0
f (ϕ(t))ϕ′(t) dt resulting from

the transformation by

ϕ(t) =
1
Q

∫ t

0
exp
[
−
(
1
τ
+

1
1 − τ

)]
dτ,

where Q =
∫ 1

0
exp
[
−
(

1
τ
+ 1

1−τ

)]
dτ is a

normalizing constant to render ϕ(1) = 1.
The transformed integrand g(t) = f (ϕ(t))ϕ′(t)
has the property that all the derivatives g( j)(t)
( j = 1, 2, . . .) vanish at t = 0, 1. By the
Euler–Maclaurin formula, this indicates that
the IMT rule should be highly accurate.
Indeed, it was shown in [2] via a complex
analytic method that the error of the IMT
rule can be estimated roughly as
exp(−C

√
N), which is much better than N−4

of the Simpson rule, say, but not as good as
exp(−CN/ log N) of the DE formula.
Variants of the IMT rule have been proposed
for possible improvement [4, 10, 21, 29], but
it turned out that an IMT-type rule,
transforming

∫ 1

0
dx to

∫ 1

0
dt rather than to∫ +∞

−∞ dt, cannot outperform the DE formula.
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development mainly in Japan. Such
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DE-Sinc methods. The subsequent results
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,
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[27] in 1993 describes this methodology to
the full extent, focusing on single
exponential (SE) transformations like
ϕ(t) = tanh(t/2). Use of the double
exponential transformation in the Sinc
numerical methods was initiated by Sugihara
[31, 33] around 2000, with subsequent
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DE-Sinc methods. The subsequent results
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Variants of the IMT rule have been proposed
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−∞ dt, cannot outperform the DE formula.

3 DE-Sinc Methods
Changing variables is also useful in the Sinc
numerical methods. The book by Stenger

[27] in 1993 describes this methodology to
the full extent, focusing on single
exponential (SE) transformations like
ϕ(t) = tanh(t/2). Use of the double
exponential transformation in the Sinc
numerical methods was initiated by Sugihara
[31, 33] around 2000, with subsequent
development mainly in Japan. Such
numerical methods are often called the
DE-Sinc methods. The subsequent results
obtained in the first half of the 2000s are
described in [5, 7, 34].
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etc. The methods using (9) and (10) are often
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analytic method that the error of the IMT
rule can be estimated roughly as
exp(−C

√
N), which is much better than N−4

of the Simpson rule, say, but not as good as
exp(−CN/ log N) of the DE formula.
Variants of the IMT rule have been proposed
for possible improvement [4, 10, 21, 29], but
it turned out that an IMT-type rule,
transforming

∫ 1

0
dx to

∫ 1

0
dt rather than to∫ +∞

−∞ dt, cannot outperform the DE formula.

3 DE-Sinc Methods
Changing variables is also useful in the Sinc
numerical methods. The book by Stenger

[27] in 1993 describes this methodology to
the full extent, focusing on single
exponential (SE) transformations like
ϕ(t) = tanh(t/2). Use of the double
exponential transformation in the Sinc
numerical methods was initiated by Sugihara
[31, 33] around 2000, with subsequent
development mainly in Japan. Such
numerical methods are often called the
DE-Sinc methods. The subsequent results
obtained in the first half of the 2000s are
described in [5, 7, 34].

3.1 Sinc Approximation
The Sinc approximation of a function f (x)
over (−∞,∞) is given by

f (x) ≈
N∑

k=−N

f (kh)S (k, h)(x), (8)

where S (k, h)(x) is the so-called Sinc
function defined by

S (k, h)(x) =
sin[(π/h)(x − kh)]

(π/h)(x − kh)

and the step size h is chosen appropriately,
depending on N. The technique of variable
transformation x = ϕ(t) is also effective in
this context. By applying the formula (8) to
f (ϕ(t)) we obtain

f (ϕ(t)) ≈
N∑

k=−N

f (ϕ(kh))S (k, h)(t),

or equivalently,

f (x) ≈
N∑

k=−N

f (ϕ(kh))S (k, h)(ϕ−1(x)).

To approximate f (x) over [0, 1], for example,
we choose

ϕ(t) =
1
2

tanh
t
2
+

1
2
, (9)

ϕ(t) =
1
2

tanh
(
π

2
sinh t

)
+

1
2
, (10)

etc. The methods using (9) and (10) are often
called the SE- and DE-Sinc approximations,

4

etc. The methods using (9) and (10) are often called the 
SE- and DE-Sinc approximations, respectively. The error 

of the SE-Sinc approximation is roughly 

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

0 10 20 30 40 50 60 70 80 90 100 110 120

|E
R
R
O
R
|

n

Chebyshev
Ordinary-Sinc

DE-Sinc
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respectively. The error of the SE-Sinc
approximation is roughly exp(−C

√
N) and

that of the DE-Sinc approximation is
exp(−CN/ log N).
These approximation schemes are compared
in Fig. 2 (taken from [34]) for function
f (x) = x1/2(1 − x)3/4 over [0, 1]. In Fig. 2,
“Ordinary-Sinc” means the SE-Sinc
approximation using (9), and the polynomial
interpolation with the Chebyshev nodes is
included for comparison.
Detailed theoretical analyses on the DE-Sinc
method can be found in Sugihara [33] as
well as Tanaka et al. [41] and Okayama et
al. [16, 20]. An optimization technique is
used to improve the DE-Sinc method in
Tanaka and Sugihara [39].

3.2 Application to Other
Problems

Once a function approximation scheme is at
hand, we can apply it to a variety of
numerical problems. Indeed this is also the
case with the DE-Sinc approximation as
follows.

• Indefinite integration by Muhammad
and Mori [8], Tanaka et al. [40], and
Okayama and Tanaka [19].

• Initial value problem of differential
equations by Nurmuhammad et al. [11]
and Okayama [15].

• Boundary value problem of differential
equations by Sugihara [32]，followed
by Nurmuhammad et al. [12, 13] and
Mori et al. [6].

• Volterra integral equation by
Muhammad et al. [9] and Okayama et
al. [18].

• Fredholm integral equation by
Kobayashi et al. [3], Muhammad et
al. [9], and Okayama et al. [17].
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Detailed theoretical analyses on the DE-Sinc method 
can be found in Sugihara [33] as well as Tanaka et al. [41] 
and Okayama et al. [16, 20]. An optimization technique 
is used to improve the DE-Sinc method in Tanaka and 
Sugihara [39].

3.2   Application to Other Problems

Once a function approximation scheme is at hand, we 
can apply it to a variety of numerical problems. Indeed 
this is also the case with the DE-Sinc approximation as 
follows.

	z Indefinite integration by Muhammad and Mori [8], 
Tanaka et al. [40], and Okayama and Tanaka [19].

	z Initial value problem of differential equations by 
Nurmuhammad et al. [11] and Okayama [15].

	z Boundary value problem of differential equations 
by Sugihara [32], followed by Nurmuhammad et al. 
[12, 13] and Mori et al. [6].

	z Volterra integral equation by Muhammad et al. [9] 
and Okayama et al. [18].

	z Fredholm integral equation by Kobayashi et al. [3], 
Muhammad et al. [9], and Okayama et al. [17].

 Acknowledgements. The authors are grateful to 
Ken'ichiro Tanaka and Tomoaki Okayama for their 
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1   Introduction

Numerical analysis means the mathematical discipline 
to design, analyse and evaluate numerical algorithms 
in continuous mathematics and therefore holds a 
significant place in applied mathematics. In its long 
history, several giants such as Issac Newton and Carl 
Friedrich Gauss remained as inventors of new algorithms. 
Thus the theory and practice of numerical analysis has 
an international nature as mathematics itself has. On the 
other hand, its study and development often exhibits 
individuality that reflects the uniqueness of each 
country, because they are carried out by scientists and 
practitioners in that particular country. On this note, the 
author tries to describe the study and development of 
numerical analysis in the modern era in Japan through 
the publication series—the Encyclopedic Dictionary of 
Mathematics (EDM) edited by the Mathematical Society 
of Japan (MSJ). 

In its scientific sense, the study of and education in 
mathematics started in Japan only about one and 
half centuries ago. Since then, a rapid development 
can be observed but it  was inclined to so-called 
pure mathematics. However, social and engineering 
developments in Japan required the application of 
mathematics and thus prompted development of 
applied mathematics. The MSJ was founded in 1877 as 
Tokyo-Sugaku-Kaisha (Tokyo Mathematics Society) with 
55 members. Subsequently, it was expanded to Tokyo-
Sugaku-Buturi-Kaisha (Tokyo Mathematical and Physical 
Society) and later to the Physico-Mathematical Society 
of Japan. It was split in 1946 into two separate societies: 
"The Mathematical Society of Japan" and "The Physical 
Society of Japan", and the MSJ as we have it today was 
established at that time. The Japan Society for Industrial 
and Applied Mathematics (JSIAM) was established in 

Taketomo Mitsui
Nagoya University, Japan
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April 1990 to support and collaborate with activities 
related to applied mathematics research, industry, and 
education in Japan. Taking this background into account, 
we investigate the historical developments of EDM by 
concentrating our focus on numerical analysis. 

2   First to third editions

In the spring of 1947, only a year after its establishment, 
MSJ star ted the publication project of EDM and 
appointed an editorial board chaired by Shôkichi Iyanaga 
(1906 – 2006). In his foreword he explained the editorial 
policy as well as the guiding principle of EDM, which 
have been applied to the successive editions, too. Iyanaga 
adopted the "middle-size article" principle, that is, each 
article in EDM describes a certain concept or fact that is 
well-structured as an explanation. Also several areas of 
mathematics such as algebra, geometry and functional 
equations were established to select articles in some 
sections. Nearly 30 Japanese mathematicians organised 
an editorial board, selected articles to be described 
and asked many colleagues to provide descriptions in 
each article. It was a big project organised by MSJ and 
eventually published by Iwanami Shoten Publishers in 
Tokyo in the spring of 1954. 

The first edition of EDM, which comprised 778 pages, 
contained no section or descriptive article on numerical 
analysis. Instead, among 64 articles in the applied 
mathematics section, several described topics in 
numerical analysis according to their contents. Those are: 

numerical calculation, interpolation, numerical 
di f ferent iat ion,  numerical  integrat ion, 
least-square method, numerical solution 
of linear equations, numerical solution of 
algebraic equations, numerical solution of 
transcendental equations, numerical solution 
of ordinary differential equations, numerical 
solution of partial differential equations, 
numerical solution of integral equations, 
relaxation methods, steepest descent method, 
W.K.B. method, graphical solution methods, 
and nomography. 

We can see that classical topics in numerical analysis 
were covered in EDM, but at the same time we are aware 

this is a list from the 1950s. As usual in EDM, the names 
of article authors were not shown with specific articles. 
However, the lists of editorial board members as well 
as of article authors give a hint. Shigeiti Moriguti (1916 – 
2002), who was on the editorial board, must have written 
several articles. Also Ayao Amemiya (1907 – 1977), Isao Imai 
(1914 – 2004), Kunihiko Kodaira (1915 – 1997) and Tosio 
Kato (1917 – 1999) possibly wrote several articles, as 
well. Many of these individuals can be said to have been 
physicists or applied physicists. This means that at that 
time physics and applied science had a close relationship 
with mathematics in its practical application. 

In 1960 the supplementar y edit ion of  EDM was 
published, however, the descriptions in the applied 
mathematics section were not revised. In the spring 
of 1968 the second edition of EDM of 1140 pages was 
published. Iyanaga again served as the editorial chair and 
the numerical analysis section was established. It was a 
good development to place numerical analysis among 
the mathematical disciplines. Hiroshi Fujita (1928 – ) and 
Masaya Yamaguti (1925 – 1998) served as the editorial 
members in charge of the section and many names of 
numerical analysts can be found in the list of authors. The 
following 19 articles were listed in the section. 

n u m e r i c a l  c a l c u l a t i o n ,  i n t e r p o l a t i o n , 
polynomial approximation, error analysis, 
numerical  solution of  l inear equations, 
numerical  computation of eigenvalues, 
numerical solution of algebraic equations, 
numerical integration, numerical solution 
of ordinary differential equations, numerical 
solution of partial differential equations, 
relaxation methods, P.L.K. method, W.K.B. 
method, steepest descent method, graphical 
solution methods, nomography, curve fitting, 
computer, and analogue computer. 

Several featured expressions were found in the articles. 
The article "numerical calculation" carries the phrase 
"numerical analysis" and its implication is given. The 
article on "numerical solution of linear equations" 
mentions the conjugate gradient (CG) method, but 
questions its practical value. The article "numerical 
solution of ordinary differential equations" stresses 
discrete variable methods. The article "numerical 
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solution of partial differential equations" refers to 
Ritz–Galerkin and finite difference methods, but not 
to the finite element method. Also, we can note that 
mathematical descriptions of digital computers appear 
to reflect the scientific developments of the 1960s. 
 
In the autumn of 1985 the third edition of EDM, with 
1609 pages, was published. This time Kiyosi Itô (1915 
– 2008) acted as the editorial chair and a total of 21 
sections were established. The section "numerical 
analysis" was continued, but the mathematical contents 
of numerical analysis were also included in articles of 
the sections "computer mathematics and combinatorial 
mathematics" and "mathematics of programming". M. 

Yamaguti again served as the editorial member in charge 
of the numerical analysis section and was strongly 
assisted by Teruo Ushijima (1939 – ). The articles in the 
section were rearranged and their description was 
updated. The 11 articles in the section are on: 

numerical calculation, interpolation, error 
analysis, numerical solution of linear equations, 
numerical  computation of eigenvalues, 
numerical solution of algebraic equations, 
numerical integration, numerical solution 
of ordinary differential equations, numerical 
solution of partial differential equations, 
analogue computation, and evaluation of 

Figure 2.1:
Shôkichi Iyanaga (top); Shigeiti Moriguti (bottom left); Tosio Kato (bottom right)

Figure 2.2:
EDM supplemented 1st edition. (a used copy)
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functions. 
The article on "numerical solution of linear equations" 
mentions the incomplete Cholesky conjugate gradient 
(ICCG) mathod and singular value decomposition. The 
article on "numerical computation of eigenvalues" is 
updated to present Lanczos and QR methods and the 
Hessenberg form. The double exponential (DE) formula 
and the adaptive quadrature are described in the article 
on "numerical integration". The article on "numerical 
solution of ordinary differential equations" refers to the 
stiff problem, whereas the article on "numerical solution 
of partial differential equations" describes the finite 
element method in detail. The fast Fourier transform (FFT) 
is referred to in the article on "evaluation of functions".

The third edition also has an English translation. Four 
volumes of the Encyclopedic Dictionary of Mathematics 
were published by the MIT Press in 1987. 

3   Fourth edition

After 20 years had passed since the publication of the 
third edition of EDM, MSJ recognised that mathematics 
generally had attained a great progress and its branches 
had deepened their mutual cooperation. At the same 

time, other scientific disciplines as well as human society 
began to apply mathematics more seriously. To meet 
such developments and requirements, in 2001 MSJ 
decided to start the project for the fourth edition of 
EDM, and Akio Hattori (1929 – 2013) was appointed the 
editorial chair. The editorial principle was kept similar to 
that of the previous editions, but some modernisation 
was carried out. The number of sections increased to 
23, from 21 in the previous edition. The editorial board 
consisted of core members and expert members. Each 
core member was in charge of several sections and 
selected the articles in those sections, while several 
expert members were in charge of single sections to 
select and coordinate each article author. At the end of 
2006, all the efforts of the people who were devoted to 
the project came to fruition and the fourth edition of 
1,976 pages was published with a CD-ROM attached. The 
CD-ROM also included the digitised contents of the third 
edition for comparison's sake. 

The present author was asked to join the editorial board 
as a core member and to be in charge of the sections 
"numerical analysis", "discrete and combinatorial 
mathematics",  "mathematics in informatics" and 
"optimization theory". Colleagues Masaaki Sugihara, 

Figure 2.3:
Kiyosi Itô (top); Hiroshi Fujita (bottom left); Masaya Yamaguti (bottom right)
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Masahisa Tabata, Mitsuhiro Nakao, Hiroshi Konno and 
Kazuo Murota greatly supported the editorial work of 
numerical analysis as expert members. The 11 articles 
in the numerical analysis section are listed below with a 
short comment. 

numerical analysis explaining "What is numerical 
analysis?"; error analysis is included. 

numerical solution of linear equations mentioning 
modern conjugate-gradient (CG) methods, the multi-
grid method and singular value decomposition. 

numerical solutions of nonlinear equations modern 
Newton iteration, the Kantorovich theorem and the 
homotopy method are given.

numerical computation of eigenvalues QR, Arnoldi 
and Lanczos methods are given together with Schur 
decomposition. 

numerical integration explaining DE formula, multi-
dimensional integration and the Monte Carlo 
method. 

numerical solution of ordinary differential equations  
rooted trees and stability analysis are described. 

numerical solution of partial differential equations 
explaining boundary-element method (BEM) and 
spectral methods.

finite difference method  for partial  differential 
equations. 

finite element method for partial differential equations. 

evaluation of functions explaining interpolation, errors, 
acceleration, CORDIC and FFT. 

self-validating methods based on the interval analysis. 

Figure 3.1:
Akio Hattori

Figure 3.2:
EDM 4th edition; outer case (left), cover (right)
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We can observe that an updated explanation at the 
beginning of the twenty-first century was given in 
each article. The present author believes that this is a 
reflection of longtime activities of research in Japan 
for numerical analysis as well as of the results of their 
intercommunication with practitioners. Of course 
international scientific exchange made a great impact, 
too. 

4   Future

The reader might wonder what any relevant publication 
of EDM would be like after the fourth edition. As far as 
the author is aware, there is no such plan. One reason 
might be the great difficulty organising an editorial 
team as well as a reliable group of article authors for 
the EDM project. However, the major reason would be 
the rapid development of the internet as well as the 
spread of information on the  Web. Printed books are 
becoming less popular. Now everybody can access Web 
pages, which provide enormous amounts of information 
including on mathematics and numerical analysis. For 
example, try inputting the string of words "numerical 
solution of linear equations" into the Web browser of 
your computer and hit the search key. You can find 

more than 100 mega hits for the string. The first natural 
embarrassment is the question, "Which fits my purpose?" 
This suggests that a reliable and systematic source 
of information is still greatly needed, particularly for 
scientific contents. Thus the author believes a publication 
like the EDM is still required to perform scientifically 
tenable study. The development of digital technology 
can rather contribute to the demand. Suppose we have a 
new digital EDM. Then, cross references between articles 
must be very easy and we can obtain a systematic view 
of each discipline. Moreover, as described in the previous 
sections, by tracing the changes of a single article 
between the editions we can understand its historical 
development and might obtain an idea for further 
progress. A proverb says that to know new things, learn 
by studying the old. The author strongly hopes for such a 
new edition in the near future. 

Note: A short description of the EDM series can be found 
in Wikipedia: 

https://en.wikipedia.org/wiki/Encyclopedic_

Dictionary_of_Mathematics 
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Photo

Recollections on my 60+ 
years on mathematical 
sciences1

Professor Hiroshi Fujita, the former president of the 
Japan Society for Industrial and Applied Mathematics 
(JSIAM) received the Kodaira Kunihiko Prize in 2019. On 
this occasion, the second author, the then president of 
JSIAM and a former pupil of the first author, planned the 
following article, composed of several questions posed 
by the second author and responses to them by the first 
author. 

Q1.   Please describe your early life until 
graduation from the University of Tokyo.

I, Hiroshi Fujita, was born on December 7th, 1928, in Osaka 
City. My father, Yoshisato, was originally from Ehime 
Prefecture and was working as an English teacher. After 
graduating from Naniwa High School of the old system 
of education, I was enrolled in the University of Tokyo 
on April 1st, 1948. I well remember an event when I took 
the entrance examination. In a seat two rows behind 
mine was sitting Masatoshi Koshiba, on whom the Nobel 
Prize in Physics was later bestowed. After having handed 
examination papers to examinees, the examiner asked, 
“Are there any questions?” Koshiba raised his hand and 
asked, “May I smoke?”

My school records in the Physics Department were mixed. 
Experimental subjects were “Excellent” but mathematical 
physics was “Good”. At the time I was studying at the 
University of Tokyo, students were expected to graduate 
in three years. However, it took four years for me. This 
was because I was unable to concentrate on learning: 
My father was killed by one of the bombings of Osaka 
by B29 bombers during the Second World War, and I had 
to earn living expenses by myself. Students in the last 
year of the university were to choose either a physics 

1	 This part is based on an article first published in Ouyousuuri, vol. 
30, issue 1 (2020), pp. 38–42. https://doi.org/10.11540/
bjsiam.30.1_38 
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experiment or a reading seminar of theoretical texts. 
Together with two of my classmates I chose the reading 
seminar. The supervisor was Takahiko Yamanouchi, a 
senior professor famous for the applications of group 
theory to quantum mechanics. He told us: “Recently 
such a new tool as distribution was invented. It will be 
important in the study of mathematical physics. To 
study the theory of distribution it will be necessary to be 
familiar with general topology.” Thus, we began reading 
Topologie Générale by Bourbaki. Professor Yamanouchi 
was surely a mathematical physicist of the first class, but 
the problems (exercises of Bourbaki) were quite difficult 
even for him. Then Tosio Kato was promoted to assistant 
professor and Professor Yamanouchi ordered us to study 
under Kato’s supervision. This was in the summer of 1951. 

Q2.   How was life in graduate school? 

I continued my study under Kato’s guidance. I was 
awarded a scholarship and my living circumstances were 
improved very much. In addition to the learning and 
research, I acted as an assistant in Kato’s laboratory. Also, 
I taught at Kaisei High School as a part-time teacher. In 
those years, it was customary for graduate students to 
defend their Doctor’s degree by submitting a thesis. It 
may sound curious to current readers, but there were 
those graduate students who were not interested in 
Doctor’s degrees. For instance, the famous scholar 
Hidetosi Takahasi defended his thesis only at the stage 

of his promotion to assistant professor (which was 
equivalent to a present associate professor) at the strong 
urging of the department leaders. 

Actually, during the starting few years of my research, 
I didn’t care much about the thesis. The first group of 
my papers was concerned with approximate numerical 
methods based on Kato’s T*T  theory. I carried out 
numerical computation by a mechanical analogue 
computer called Tiger. The T*T theory is acclimatable 
to the finite element method (FEM), hybrid FEM in 
particular, and later in the 1970s led me to the study of 
FEM. It also motivated my collaboration with engineers. 
In addition, based on Kato’s advice, I studied carefully the 
finite difference method, too. His advice was something 
like this: The era of applied mathematics using a 
computer is emerging, and you should be prepared for 
it. Since you are studying mathematics in the Physics 
Department, it won’t be easy to find an academic job. 
Therefore, you should arm yourself with the weapons of 
numerical methods in the use of computers. 

I was employed as a research assistant in the Physics 
Department in the summer of 1956. In the spring 
of 1957, I married Yoshiko. Kato told me that it was 
about time to submit my thesis, when I encountered 
the paper by Kiselev and Ladyzhenskaya (called “the 
K-L paper” for short) published in Izvestiya. This was 
the beginning of my research on the Navier–Stokes 

Tosio Kato and his students in the 1950s. Seated, from the 
left: Tosio Kato, Teruo Ikebe, Hiroshi Fujita, Yoshimoto Nakata. 
Standing: Shige-Toshi Kuroda.
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equations. I learned of the works by J. Leray and E. Hopf 
from the K-L paper. In those days, books and journals 
from Western countries were expensive for Japanese 
scholars, whereas Russian books and journals were 
cheap. Therefore, Kato’s students often read books and 
journals in Russian with much effort. The K-L paper 
used a Galerkin method suitable for a time-dependent 
system in order to prove the existence of the solution of 
the initial-boundary value problem for nonstationary 
flows. It then naturally occurred to me that the stationary 
solutions could be transparently constructed by 
some sort of Galerkin method. This idea led me to my 
thesis. From this experience, I learned the lesson that 
a good approximation method was a good method of 
theoretical analysis. Near the completion of the paper, 
I learned of Robert Finn’s paper on exterior flows that 
approach a uniform flow at infinity. I therefore poured 
my energy into deriving a result no less important than 
his.

Q3.   Please tell us of your experience 
with digital computers in those early 
days. 

It was when I was an assistant in the Physics Department 
that I first used a digital computer. Around that time, 
Eiichi Goto invented a parametron, a circuit element, 
by which Goto’s teacher, Professor Takahasi, and his co-
workers built the PC-1 (parametron computer 1), whose 
memory was a mere 8-bit 500 words. Nevertheless, 
the time-marching finite difference scheme yielded a 
solution of the initial-boundary value problem of the 
heat equation in one dimension. Professor Takahasi, 
a brilliant physicist, also had an insight into numerical 
analysis and computational method. It is well known that 
Masatake Mori was inspired by Takahasi to discover their 
celebrated double exponential formula for quadrature. 
Eiichi Goto also had unusually keen insight into 
numerical analysis.  

Q4.   Please describe for us your research 
experience in the USA in the 1960s.

I first visited the USA in September1962. I went to 
Stanford University and stayed there for a year and a 
half with Professor Robert Finn. From San Francisco 
airport to Stanford, I saw many cars running at high 

speed on a freeway for the first time in my life. I was 
impressed by the spectacular view. My title at Stanford 
was research associate, but a year later I was assigned to 
be a lecturer to teach. The salary was about seven times 
more than the one in Tokyo. At that time, I was working 
at the University of Tokyo as a lecturer in the Faculty of 
Engineering, where the teaching load in mathematics 
and mechanics was heavy, and an 18-month leave was 
considered to be long. On the other hand, the Faculty 
of Science imposed a lighter teaching load. During my 
stay, Stanford University paid my salary—a considerable 
difference from the current situation both in Japan and in 
America. After finishing the term in Stanford, I came back 
to the University of Tokyo and was soon promoted to full 
professor in the Mathematics Department of the Faculty 
of Science. In 1967, I visited the Courant Institute of 
Mathematical Science at New York University and stayed 
there for one year as visiting faculty. It was L. Nirenberg 
who invited me to Courant as he was seriously interested 
in my result for the blow-up problem. 

Q5.   Please tell something about the 
blow-up problem. 

It would be my paper on the blow-up problem that 
came to be cited most frequently among my papers. It 
was only many years later that this work became widely 
recognized as a valuable achievement. On the other 
hand, I was mostly satisfied with my proposal of such 
a typical problem, which focuses on the interaction 
between the space-dimension and the degree of 
nonlinearity in the Cauchy problem for the typical 
nonlinear heat equation, which later became known as 
the Fujita equation.

My motivation in looking for such a model equation was 
as follows: The difficulty of three-dimensional Navier–
Stokes equations were well known, while the problem 
had been solved in two dimensions. If going straight is 
difficult, you should go around the obstacle   and you 
should extract the essence of the relation between 
nonlinearity and spatial dimensions. I must add that my 
thoughts during my derivation of the Fujita equation 
benefitted from the planning of physical experiments, 
where you set up a typical event; that is, an event in the 
circumstances where the essence of the phenomena 
should be revealed plainly, and the characteristics 
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and mechanism of the problem in question become 
conspicuous. According to Professor Kunihiko Kodaira, 
mathematical phenomena do exist just as physical 
phenomena do, and mathematics is a science that tries 
to understand the mathematical phenomena. The 
proposal of the Fujita equation was, I believe, pioneering 
in the sense that it was invented to extract the essence 
of the mathematical phenomena involved in the blow-
up problems. This desire of mine was better understood 
by foreign scholars than Japanese ones except for Eiji 
Yanagida and Noriko Mizoguchi. By analyzing the Fujita 
equation, I happily discovered what is called the Fujita 
Exponent—the pictures of blow-up changes drastically 
according to the degree that the nonlinearity is greater 
or less than the exponent. This result was predicted 
neither physically nor numerically. It was a surprise that, 
for fixed spatial dimensions, all the positive solutions blow 
up if the degree of nonlinearity is smaller than the Fujita 
Exponent. 

Q6.   How was your career from the 
Physics Department through the Faculty 
of Engineering to the Mathematics 
Department? 

Right after obtaining my doctorate, I was promoted to 
lecturer in July 1960, in the Applied Physics Department 
of the Faculty of Engineering of the University of Tokyo. 
Tetsuro Inui invited me there. I spent six years, during 
which I became acquainted with younger friends Hideo 
Kawarada, Masatake Mori, and Makoto Natori, who later 
became leaders in the applied mathematics community 
of Japan, and I enjoyed the role of being the leader 
among them both in studying mathematics and in 
playing mah-jong. It was not long after my return from 
USA that I was invited to the Mathematics Department to 
become a professor. I was advised by Professor Kyuichirō 
Washizu, who was a fervent admirer of Kato’s result on 
calculus of variations, not to move, saying, “The Faculty 
of Engineering treasures older people, while importance 
is attached more to younger people than older ones in 
the Faculty of Science. You are getting older, and I do not 
understand why you are moving to the Mathematics 
Department.” But I did not follow his advice. When two 
mathematics professors, Kōsaku Yosida and Yukiyoshi 
Kawada, came to my office and enthusiastically urged 

me to come to the Mathematics Department, I was 
very touched by their personalities: Yosida’s manly 
enthusiasm  and Kawada’s gentle thoughtfulness.  

Q7.   Please tell what you know about 
the establishment of the Japan Society 
of Industrial and Applied Mathematics 
(JSIAM).

It was Masatake Mori who played the most effective 
leading role in the establishment of JSIAM. I may have 
made some founding contribution to develop Tokyo–
Kyoto collaboration in applied mathematics through 
my close association with Professor Masaya Yamaguti 
of Kyoto University prior to the start of JSIAM. During 
those years, I held a parallel appointment as a professor 
at the Research Institute for Mathematical Sciences, 
Kyoto University. Taking advantage of this, I established 
a friendly collaboration with him and set up a coalition 
between applied mathematics communities of the 
University of Tokyo and Kyoto University. It went well 
perhaps because both of us worked in mathematics 
departments but also had experienced working in 
faculties of engineering. As for the University of Tokyo, it 
might have been significant for the progress of applied 
mathematics that Masao Iri was then the Dean of the 
Faculty of Engineering of the University of Tokyo and 
I was the Dean of the Faculty of Science. As I stated 
in the symposium just before the founding of JSIAM, 
while paying respect to the systematic construction 
by rigorous proofs on the one hand, there should be 
manifold and multi-layered rules for judgments (for 
truth). For that matter, we should look at how consensus 
is formed by experiments in the physics community or 
how a court draws conclusions from collected evidence. 
In systematization by theory, drawing a whole from 
axioms, used in traditional mathematics, should not 
be the only doctrine; we should also utilize the ad-hoc 
understanding or follow the experience-based induction 
in order to attain a practical goal.

Q8.   What was the beginning of the 
Japan–China seminar on numerical 
analysis? 

Its beginning was my conversation in 1981 with Hua 
Lougeng, who was then the president of the Chinese 
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Mathematical Society. I visited China as the president 
of the Mathematical Society of Japan not long after the 
end of the Cultural Revolution, with the financial support 
of JSPS, the Japan Society for the Promotion of Science. 
After discussion with Hua Lougeng, we decided to 
resume academic exchanges in mathematics between 
the two societies. A thematic seminar was also set forth. 
Professor Feng Kang in the Chinese Academy of Science 
was in charge of it, and the first seminar, presided over 
by Professor Shi Zhong-ci, was held in Beijing in 1992. 
Thereafter the seminar was held every two years in 
China and Japan in turn. The second seminar was held at 
the University of Electro-Communications in Tokyo, for 
which Teruo Ushijima played a vital role. Nowadays joint 
papers by mathematicians in China and Japan are not 
uncommon, and we see many Chinese mathematicians 
teaching in Japanese universities. However, in the 
1980s and 1990s, it was not an easy matter to support 
such seminars or symposiums. Hosts of the successive 
seminars must have spent a lot of effort for the success of 
the seminars. It was later consolidated with the China–
Korea seminar, and Norikazu Saito is now in charge of 
it. I really hope that this project will endure against the 
political wind and continue contributing to the progress 
of applied mathematics in the new century. 

Q9.   What do you think of the new 
phase of mathematics education and/or 
mathematical sciences? 

I was the president of the Mathematics Education 
Society of Japan in 2003–2008 and represented Japan 
in the International Commission on Mathematical 
Instruction in 1984–1994. Thus, I made a profound 
commitment to mathematics education. In the applied 
mathematics aspect of education, I was quite positive 
from the beginning about introducing computers in 
secondary schools. Or, I am proud to say that I played 
a leading role in the matter. When MEXT’s Curriculum 
Guidelines for High Schools were revised in 1989, I was 
officially involved. Around that time I wrote that, “It will 
help foster literacy in mathematics to use a computer or 
a calculator to familiarize students with mathematical 
concepts and facts by manual movements. Further, we 
can expect it to help those students who are unable 
to follow the traditional definition-theorem-proof 
system to grasp sophisticated concepts.” Computers are 

not easily adopted for examinations. Also, those who 
were willing to use such tools as computers were still a 
minority in Japan. The use of computers in high schools 
was not welcomed. I remember a good mathematician 
having expertise in mathematics education once said 
that people would soon use computers in the same way 
that we use telephones, i.e., without special knowledge. 
This was certainly an irresponsible remark. As time went 
on, many countries introduced computer-oriented 
education, and the gap between those countries and 
Japan has widened seriously. Japan must try very hard to 
catch up with them.  

I would like to add that “mathematics literacy” is a 
term that I introduced in 1969 for the first time ever in 
the world. I invented it based on the term “computer 
literacy”. I used it in the following way: Mathematics 
literacy is needed, according to the variety of jobs of 
people who are not specialists in mathematics. Or, 
we may say: Mathematics literacy is the ground-level 
knowledge of mathematics users. An official at MEXT 
at that time perhaps felt uneasy about the term, and 
he even tried to rephrase it to “application capability”. 
Also, some mathematics scholars who were enthusiastic 
in education criticized it on the basis that such a term 
which cannot be translated into Japanese should not be 
used in the Curriculum Guidelines. Fortunately, Professor 
Kodaira, after having questioned its position/relation 
with the concept of numeracy, kindly admitted the use 
of mathematics literacy. 

In the 21st century the importance of talent in mathematics 
is paraphrased as the call for STEM (Science-Technology-
E n g i n e e r i n g - M a t h e m a t i c s )  e d u c a t i o n .  T h e r e , 
understanding by means of mathematical intelligence 
and achievements with the help of mathematical 
methods should be pushed forward together. For 
those directions,  I  spoke on the occasion of the 
Kodaira Prize ceremony, but I would like to reiterate it 
here: The keyword is multi-layered understanding of 
concepts both in improving mathematics education 
of the new era and in developing new fields at the 
frontier of mathematics. I would define multi-layered 
understanding as extending from elementary intuition 
through the deepest grasp of a matter. In conclusion, I 
would like to direct the reader’s attention to the words 
of Kōan Ogata, a medical doctor who flourished just 
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before the Meiji Restoration and who educated Yukichi 
Fukuzawa and other talented people in the modern era, 
that learning must be accomplished with devotion to the 
people and the country. This attitude is surely beyond 
the reach of AI, which derives conclusions inductively 
from big data.
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City overview
Tokyo, Japan's bustling capital city, is a modern, vibrant 
megalopolis that combines business, knowledge, 
creativity and innovation. The city is the epitome of 
fusion, where over 400 years of Japanese history is 
juxtaposed with modern Tokyo, providing a unique 
experience for all visitors. There is something for 
everyone: Visitors can choose from over 100,000 
restaurants, including more than 200 Michelin-starred 
restaurants, enjoy one of its 80-plus parks, immerse 
themselves in the aesthetics of the Japanese tea 
ceremony or indulge in a night of unique Japanese 
culture at a Kabuki theatre. 
Go  Tokyo website (Food & Drink): 
https://www.gotokyo.org/en/see-and-do/drinking-
and-dining/index.html

Irresistible cuisine

The Japanese quest for excellence extends to its kitchens, 
whether in five-star hotels or the local noodle shops. 

Tokyo Station

Nijubashi Bridge

Sushi
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Hagoita (Battledore)

Japanese Tea Ceremony

The National Museum of Western Art

Food lovers will be pleased to know that washoku, or 
authentic Japanese cuisine, which includes the globally 
popular sushi and tempura, has been designated as an 
Intangible Cultural Heritage in 2013 by UNESCO. There 
is no better place in the world than Tokyo to enjoy these 
authentic Japanese delicacies. 
Go  Tokyo website (Shopping): 
https://www.gotokyo.org/en/see-and-do/shopping/
index.html

Time to shop!

Tokyo offers countless opportunities for visitors to shop 
for the beautiful and traditional products for which 
Japan is famous: exquisite green tea and traditional 
sweets, elegant lacquerware, etched glass and “Japan-
original” designed textiles and fashion. The Ginza 
shopping district is home to world-renowned fashion 
and jewellery brands and one of the oldest department 
stores in the world, Mitsukoshi. The Shibuya/Harajuku 
area, famous for the Scramble Crossing featured in the 
film Lost in Translation, is the centre of youth culture 
and fashion trends in Tokyo. Shinjuku is a district that 
caters to everyone from businesspeople to students to 
visitors, and everything from UNIQLO to the renowned 
department store ISETAN fulfils the needs of locals and 
tourists alike.
Go  Tokyo website (Art & Design):
https://www.gotokyo.org/en/see-and-do/arts-and-
design/index.html
Go  Tokyo website  (History): 
https://www.gotokyo.org/en/see-and-do/history/
index.html
Go  Tokyo website (Culture): 
https://www.gotokyo.org/en/see-and-do/culture/
index.html 

Explore arts and culture
Tokyo has dozens of museums spanning nearly every 
subject area and interest. For the more contemporary 
minded, there is an impressive number of smaller 
museums and galleries showcasing home-grown artists. 
Museum fans with limited time should consider a visit to 
Ueno, where a variety of first-class museums, including 

Kanda Shrine
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the Tokyo National Museum, the National Museum of 
Western Art, the Tokyo Metropolitan Art Museum and the 
National Science Museum, are located close together. 

Tokyo also has 27 theatres, including the Kabuki Theatre, 
the only theatre in the world dedicated to Kabuki. Kabuki 
is traditional theatre, performed by men in stunning 
makeup and gorgeous costumes accompanied by live 
music. Suntory Hall is home for Tokyo’s six professional 
orchestras. This concert hall is highly regarded by 
musicians and audiences, with Maestro Herbert von 
Karajan calling it “a jewel box of sound.”
Go  Tokyo website (Nightlife): 
https://www.gotokyo.org/en/see-and-do/nightlife/
index.html

Tokyo at night

As dusk falls, Tokyo is transformed into a city of bright 
lights. Many observation decks in towers and tall 
buildings are open late, providing great vantage points 
for stunning night views. An evening stroll through the 
streets of Shinjuku, Ginza or Shibuya – Tokyo’s best-
known nightlife districts – is a great way to see the city 
after dusk and enjoy the myriad of neon lights. The Blue 
Note Tokyo is the largest club in Tokyo for first-class jazz, 
Latin and soul acts. Billboard Live – where musicians 
on their world tours converge – offers a wide range of 
different genres of music from classic to jazz to pop to 
R&B. Visitors who want to enjoy a more local atmosphere 
can patronize the izakaya (local pubs) for a Japanese beer 
and yakitori.

Welcome, sports fans!

Tokyo is a major centre for sports in Japan. Its professional 
sports teams compete in baseball, soccer and sumo. 
Die-hard sumo fans will vouch that sumo wrestling – 
Japan’s traditional national sport – is better than theatre. 
Intense bouts usually last for just a few intense seconds, 
with a lot of posturing in between. The centre of sumo 
in Tokyo is the Ryogoku Kokugikan. The Japanese also 
love watching professional baseball games and soccer. 
Visitors who are not familiar with the team or players will 
still find this very enjoyable as local fans always welcome 
foreign visitors who join the crowds of spectators.

Shinjyuku

Shibuya Scramble Crossing 

Sumo

Yakitori
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Gateway to further
adventure
Thanks to its location at the centre of the country, Tokyo 
serves as an ideal gateway to Japan. Delegates can enjoy 
the vast nature and rich history around the country. 
The country’s extensive national transportation system 
including the Shinkansen (bullet train) makes short 
getaway trips from Tokyo hassle-free.  

Kyoto and Nara: Two ancient capitals

 Kyoto: 135 minutes by bullet train from Tokyo
 Nara: less than one hour by local train from Kyoto

Undoubtedly one of the most stunning cities in Japan, 
Kyoto is the perfect addition to your trip. The Golden 
Pavilion, the Kiyomizu Temple and Ryoanji with its 
famous rock garden are magnificent temples listed as 
UNESCO World Heritage sites. Nara, another former 
capital, is home to Horyuji Temple, the world’s oldest 
surviving wooden structure at 1,400 years of age. Famous 
for wagashi, or traditional Japanese sweets, and green 
tea, Kyoto preserves the atmosphere of traditional Japan 
whilst also being a hip city popular with young people, 
many of whom attend its numerous universities. 

Shinkansen and Mt. Fuji

Horyuji Temple

Arashiyama at Kyoto

38



TOKYO CITY GUIDE

Hakone: Onsen spot with a view of 
Mt. Fuji 

 An hour and a half by train from Tokyo
Hakone, a popular resort area for locals and visitors 
alike, is known for its hot springs and beautiful scenery. 
A 90-minute train ride from Shinjuku will take visitors 
to the town where Japan’s iconic national symbol, the 
magnificent Mt. Fuji, can be admired from Lake Ashinoko.

Nikko: World Heritage site

 Two hours by bullet train and local train from Tokyo
Nikko is famous for the shrine dedicated to Tokugawa 
Ieyasu, the first shogun of the Tokugawa Shogunate. The 
luxurious colours used on the Toshogu Shrine as well 
as the Rinno-ji Temple reflect Japanese history in the 
17th century. Together with forested areas that include 
the Nikko-suginamiki-kaido (Cedar Avenue of Nikko, 
the world’s longest tree-lined avenue), Nikko has been 
designated as a UNESCO World Heritage site and an 
important cultural property. Toshogu Shrine

Owakudani at Hakone

Lake Ashinoko  at Hakone
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Great Buddha at Kamakura

A view from the top of Mt. Takao

Hachijo Island

Mt. Takao: Award-winning views

 One hour by local train from Tokyo
Accessible from Tokyo’s city centre in just one hour, Mt. 
Takao has been awarded 3 stars by Michelin Green Guide 
Japan. Despite its modest height of 599 m, Mt. Takao 
is great for casual hiking. The mountain is especially 
popular during the autumn leaf-viewing season from the 
middle of November.

Hachijo Island: The hot spring island 
of Tokyo

 50 mins by plane from Haneda airport 
Hachijo Island is one of the nearest island resorts from 
Tokyo, a gourd-shaped island formed by two mountains 
to the west and east.  The island has subtropical 
vegetation thanks to the Kuroshio Current, and abundant 
hot springs. You can enjoy both trekking and diving.

Kamakura

 An hour by train from Tokyo
Capital of Japan during the eponymous Kamakura Period 
(1185 – 1333), Kamakura is about an hour’s train ride 
from central Tokyo. Renowned for its temples, shrines 
and the Great Buddha, 11 m in height and dating from 
1252, Kamakura is a gorgeous city to explore. Summer is 
a popular time to visit, when the sandy beaches located 
on the edge of the city are thronged with bathers.
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Tips for sightseeing spots in Tokyo

Tokyo TowerTokyo Skytree Asakusa

Kabukiza Theatre

Shinjuku Gyoen National Garden

Imperial Palace Tokyo Station

Hamarikyu Gardens

Kabuki-za （歌舞伎座） in Ginza 
is the principal theater in Tokyo 
for the traditional kabuki drama 
form.

Tokyo Station （東京駅）, also 
sometimes referred to as Tokyo 
Central Station, is a railway 
station. The newer Eastern 
extension is not far from the 
Ginza commercial district.

The Imperial Palace （皇居） is the 
main residence of the Emperor 
of Japan. It is a large park-like 
area.  The 1.15-square-kilometer 
(0.44 sq mi) palace grounds and 
gardens are built on the site of 
the old Edo Castle.

Hama-rikyū Gardens （浜離宮
恩賜庭園） is a metropolitan 
garden. A landscaped garden of 
250,216 m² includes Shioiri-no-
ike (Tidal Pond), and the garden 
is surrounded by a seawater moat 
filled by Tokyo Bay.

Shinjuku Gyo-en （新宿御苑） is a 
large park and garden in Shinjuku 
and Shibuya, Tokyo, Japan. It 
was originally a residence of the 
Naitō family in the Edo period. It 
is now a national park under the 
jurisdiction of the Ministry of the 
Environment.

Tokyo Skytree （東京スカイツリー） 
is a broadcasting and observation 
tower in Sumida, Tokyo. It became 
the tallest structure in Japan in 
2010 and reached its full height of 
634 metersin March 2011.

The Tokyo Tower （東京タワー） is a 
communications and observation 
tower in the Shiba-koen district 
of Minato, Tokyo, Japan, built in 
1958. At 332.9 meters, it is the 
second-tallest structure in Japan.

Asakusa （浅草） is a district in 
Taitō, Tokyo, Japan.Asakusa has 
many restaurants and places to try 
traditional Japanese food.

Useful Site
 Go Tokyo (The offical
Tokyo Travel Guide)

 Visit Chiyoda (Chiyoda
City Tourism Association)

 Japan Tourism Agency

 Art & Design in Tokyo

 Wi-Fi & Connectivity
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Useful Phrases

Hello こんにちは Konnichi wa

Nice to meet you はじめまして Hajimemashite

Good morning おはようございます Ohayō gozaimasu

Good afternoon こんにちは Konnichi wa

Good evening こんばんは Konban wa

Thank you ありがとう Arigatō

You are welcome どういたしまして Dō itashimashite

I am sorry ごめんなさい Gomen nasai

Excuse me すみません Sumimasen

Yes/No はい / いいえ Hai/Iie

How much is it? いくらですか Ikura desuka

How do I get to (Place)? (Place) はどういけばいいですか (Place) wa do ikeba iidesuka

Where is the restroom? トイレはどこですか Toire wa dokodesuka

Memo
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Welcome to all the international participants
of the Tokyo ICIAM 2023!
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